1. Let \(V \) denote the space of functions defined in Lecture 2 and let \(k \in C^1[0,1] \) be uniformly positive. As in lectures, let \(a(v,w) = \int_0^1 kv'w' \), for all \(v, w \in V \). Show that \(a \) is an inner product on \(V \) and write down the induced norm \(\| \cdot \|_a \).

2. Consider the space \(V_h \) from §1.2 in lectures (cf. Problem Sheet 1, Question 2) in the special case of a uniform mesh, i.e. \(x_i = i/(n + 1), i = 0, \ldots, n + 1 \), with \(\phi_i, i = 1, \ldots, n \) denoting the hat functions again. Show that

\[
\int_0^1 \phi_i dx = 1/(n + 1), \quad i = 1, \ldots, n.
\]

Show also that for \(i, j \in \{1, \ldots, n\} \) we have

\[
\int_0^1 \phi'_i \phi'_j dx = \begin{cases} 2(n + 1) & \text{if } i = j, \\ -(n + 1) & \text{if } |i - j| = 1, \\ 0 & \text{otherwise.} \end{cases}
\]

3. Write a MATLAB program to assemble, for any given value of \(n \), the \(n \times n \) tridiagonal matrix:

\[
A = (n + 1) \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 \end{bmatrix}.
\]

Your program should also create the column vector \(f \in \mathbb{R}^n \) with entries \(f_i = 1/(n + 1), i = 1, \ldots, n \). Then using the \(\backslash \) (backslash) command solve the linear system

\[
AU = f
\]

for the solution vector \(U \).

[Hint: Type help diag, help ones and help slash to find out about relevant commands.]

4. Consider the piecewise linear finite element method for the problem

\[-u''(x) = 1, \quad \text{for } x \in (0,1) \quad \text{subject to } u(0) = 0 = u(1).\]

(This is the problem (D) of section (1.1) with \(k(x) = 1 = f(x) \) for all \(x \).) Convince yourself that the program you have constructed in the previous question actually implements this method. The vector \(U \) which comes out of the program contains the values of the approximate solution at the interior mesh points.

By trying a few different values of \(n \) (e.g. \(n = 15, 63 \)), compare a few entries of \(U \) with the exact solution of the differential equation (which you have to find). What do you observe?