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Finite Element Error Analysis of Elliptic PDEs with Random

Coefficients and its Application to Multilevel Monte Carlo Methods

Julia Charrier∗, Robert Scheichl† and Aretha L. Teckentrup†

Abstract

We consider a finite element approximation of elliptic partial differential equations with ran-
dom coefficients. Such equations arise, for example, in uncertainty quantification in subsurface
flow modelling. Models for random coefficients frequently used in these applications, such as
log-normal random fields with exponential covariance, have only very limited spatial regularity,
and lead to variational problems that lack uniform coercivity and boundedness with respect to
the random parameter. In our analysis we overcome these challenges by a careful treatment
of the model problem almost surely in the random parameter, which then enables us to prove
uniform bounds on the finite element error in standard Bochner spaces. These new bounds
can then be used to perform a rigorous analysis of the multilevel Monte Carlo method for these
elliptic problems that lack full regularity and uniform coercivity and boundedness. To conclude,
we give some numerical results that confirm the new bounds.

Keywords: PDEs with stochastic data, non-uniformly elliptic, non-uniformly bounded, lack of
full regularity, log-normal coefficients, truncated Karhunen-Loève expansion.

1 Introduction

Partial differential equations (PDEs) with random coefficients are commonly used as models for
physical processes in which the input data are subject to uncertainty. It is often of great importance
to quantify the uncertainty in the outputs of the model, based on the information that is available
on the uncertainty of the input data.

In this paper, we consider elliptic PDEs with random coefficients, as they arise for example in
subsurface flow modelling (see e.g. [11], [10]). The classical equations governing a steady state,
single phase subsurface flow consist of Darcy’s law coupled with an imcompressibility condition.
Taking into account the uncertainties in the source terms f and the permeability a of the medium,
this leads to a linear, second-order elliptic PDE with random coefficient a(ω, x) and random right
hand side f(ω, x), subject to appropriate boundary conditions.

Solving equations like this numerically can be challenging for several reasons. Models typically
used for the coefficient a(ω, x) in applications can vary on a fine scale and have relatively large
variances, meaning that in many cases we only have very limited spatial regularity. In the context
of subsurface flow modelling, for example, a model frequently used for the permeability a(ω, x) is
a homogeneous log-normal random field. That is a(ω, x) = exp[g(ω, x)], where g is a Gaussian
random field. We show in §2.3 that for common choices of mean and covariance functions, in
particular an exponential covariance function for g, trajectories of this type of random field are
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only Hölder continuous with exponent less than 1/2. Another difficulty sometimes associated with
PDEs with random coefficients, is that the coefficients cannot be bounded uniformly in the random
parameter ω. In the worst case, this leads to elliptic differential operators which are not uniformly
coercive or uniformly bounded. This is for example true for log-normal random fields a(ω, x). Due
to the nature of Gaussian random variables, a(ω, x) can in this case not be bounded from above
or away from zero uniformly in ω. It is, however, possible to bound a(ω, x) for each fixed ω.

In this paper, we consider a finite element approximation (in space) of elliptic PDEs with
random coefficients as described above, with particular focus on the cases where the coefficient
a(ω, x) can not be bounded from above or away from zero uniformly in ω, and trajectories of
a(ω, x) are only Hölder continuous. Indeed, if one assumes that the random coefficient a(ω, x)
is sufficiently regular and can be bounded from above and away from zero uniformly in ω, the
resulting variational problem is uniformly coercive and bounded, and the well-posedness of the
problem and the subsequent error analysis are classical, see eg. [2, 12, 1, 3]. We here derive
bounds on the finite element error in the solution in both Lp(H1

0 (D)) and Lp(L2(D)) norms. Our
error estimate crucially makes use of the observation that for each fixed ω, we have a uniformly
coercive and bounded problem (in x). The derivation of the error estimate is then based on
an elliptic regularity result for coefficients supposed to be only Hölder continuous, making the
dependence of all constants on a(ω, x) explicit. We emphasise that we work in standard Bochner
spaces with the usual test and trial spaces as in the deterministic setting. As such, our work
builds on and complements [13, 5, 17, 9] which all are concerned with the well-posedness and
numerical approximation of elliptic PDEs with infinite dimensional stochastic coefficients that are
not uniformly bounded from above and below (e.g. log-normal coefficients).

Finally, applying the new finite element error bounds, we quantify the error committed in the
multilevel Monte Carlo (MLMC) method. The MLMC analysis is motivated by [7], where the
authors recently demonstrated numerically the effectiveness of MLMC estimators for computing
moments of various quantities of interest related to the solution u(ω, x) of an elliptic PDE with
log-normal random coefficients. The MLMC method is a very efficient variance reduction technique
for classical Monte Carlo, especially in the context of differential equations with stochastic data
and stochastic differential equations. It was first introduced by Heinrich [19] for the computation
of high-dimensional, parameter-dependent integrals, and has been analysed extensively by Giles
[16, 15] in the context of stochastic differential equations in mathematical finance. Under the
assumptions of uniform coercivity and boundedness, as well as full regularity, convergence results
for the MLMC estimator for elliptic PDEs with random coefficients have recently also been proved
in [3]. Here we consider the problem without these assumptions which is of particular interest in
subsurface flow applications, where log-normal coefficients are most commonly used.

The outline of the rest of this paper is as follows. In §2, we present our model problem
and assumptions, and recall from [5], the main results on the error resulting from truncating
the Karhunen-Loéve expansion in the context of log-normal coefficients. §3 is devoted to the
establishment of the finite element error bound. We first prove a regularity result for elliptic PDEs
with Hölder continuous coefficients, making explicit the dependence of the bound on ω. The full
proof is given in the appendix. From this regularity result we then deduce the finite element error
bound in the H1-seminorm, before also treating the case of the L2-norm and the contribution of
the quadrature error. We also improve the bound given in [5] for the finite element error in the case
of truncated KL-expansions of log-normal random fields, ensuring uniformity in K (the number
of terms of the truncated expansion). In §4, we use the finite element error analysis from §3 to
furnish a complete error analysis of the multilevel Monte Carlo method. To begin with, we present
briefly the multilevel Monte-Carlo method for elliptic PDEs with random coefficients proposed in
[7], before providing a rigorous bound for the ε-cost. Finally, in §5 we present some numerical
experiments, illustrating the sharpness of some of the results.
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2 Preliminaries

2.1 Notation

Given a probability space (Ω,A,P) and a bounded Lipschitz domain D ⊂ Rd, we introduce the
following notation. For any k ∈ N, we define on the Sobolev space Hk(D) the following semi-norm
and norm:

|v|Hk(D) =
(∫

D

∑
|α|=k

|Dαv|2 dx
)1/2

and ‖v‖Hk(D) =
(∫

D

∑
|α|≤k

|Dαv|2 dx
)1/2

.

We recall that, since D is bounded, the semi-norm | · |Hk(D) defines a norm equivalent to the norm
‖ · ‖Hk(D) on the subspace Hk

0 (D) of Hk(D). For any real r ≥ 0, with r /∈ N, set r = k + s with
k ∈ N and 0 < s < 1, and denote by | · |Hr(D) and ‖ · ‖Hr(D) the Sobolev–Slobodetskii semi-norm
and norm, respectively, defined for v ∈ Hk(D) by

|v|Hr(D) =
( ∫
D×D

∫ ∑
|α|=k

[Dαv(x)−Dαv(y)]2

|x− y|d+2s
dx dy

)1/2

and ‖v‖Hr(D) =
(
‖v‖2Hk(D)+|v|

2
Hr(D)

)1/2

.

The Sobolev space Hr(D) is then defined as the space of functions v in Hk(D) such that the
integral |v|2Hr(D) is finite. For 0 < s ≤ 1, the space H−s(D) denotes the dual space to Hs

0(D) with
the dual norm.

In addition to the above Sobolev spaces, we also make use of the Hölder spaces Ct(D), with
0 < t < 1, on which we define the following semi-norm and norm

|v|Ct(D) = sup
x,y∈D:x 6=y

|v(x)− v(y)|
|x− y|t

and ‖v‖Ct(D) = sup
x∈D
|v(x)|+ |v|Ct(D).

The spaces C0(D) and C1(D) are as usual the spaces of continuous and continuously differentiable
functions with the standard norms.

Finally, we will also require spaces of Bochner integrable functions. To this end, let B be a
Banach space with norm ‖ · ‖B, and v : Ω→ B be strongly measurable. With the norm ‖ · ‖Lp(Ω,B)

defined by

‖v‖Lp(Ω,B) =

{(∫
Ω ‖v‖

p
B dP

)1/p
, for p <∞,

esssupω∈Ω‖v‖B, for p =∞,
the space Lp(Ω,B) is defined as the space of all strongly measurable functions on which this norm
is finite. In particular, we denote by Lp(Ω, Hk

0 (D)) the Bochner space where the norm on Hk
0 (D)

is chosen to be the seminorm | · |Hk(D). For simplicity we write Lp(Ω) for Lp(Ω,R).
The key task in this paper is keeping track of how the constants in the bounds and esti-

mates depend on the coefficient a(ω, x) and on the mesh size h. Hence, we will almost always be
stating constants explicitly. To simplify this task we shall denote constants appearing in Theo-
rem/Proposition/Corollary x.x by Cx.x. Constants that do not depend on a(ω, x) or h will not be
explicitly stated. Instead, we will write b . c for two positive quantities b and c, if b/c is uniformly
bounded by a constant independent of a(ω, x) and of h.

2.2 Problem Setting

We consider the following linear elliptic partial differential equation (PDE) with random coeffi-
cients:

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x), in D, (2.1)
u(ω, x) = 0, on ∂D,
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for almost all ω ∈ Ω. The differential operators ∇· and ∇ are with respect to x ∈ D. Let us
formally define, for all ω ∈ Ω,

amin(ω) := min
x∈D

a(ω, x) and amax(ω) := max
x∈D

a(ω, x). (2.2)

We make the following assumptions on the input random field a and on the source term f :

A1. amin ≥ 0 almost surely and 1/amin ∈ Lp(Ω), for all p ∈ (0,∞).

A2. a ∈ Lp(Ω, Ct(D)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).

A3. f ∈ Lp∗(Ω, Ht−1(D)), for some p∗ ∈ (0,∞].

The Hölder continuity of the trajectories of a in Assumption A2 implies that both quantities in
(2.2) are well defined, that amax ∈ Lp(Ω) and (together with Assumption A1) that amin(ω) > 0
and amax(ω) <∞, for almost all ω ∈ Ω. We will here not make the assumption that we can bound
amin(ω) away from zero and amax(ω) away from infinity, uniformly in ω, as this is not true for
log-normal fields a, for example. Many authors work with such assumptions of uniform ellipticity
and boundedness. We shall instead work with the quantities amin(ω) and amax(ω) directly.

Note also that our assumptions on the (spatial) regularity of the coefficient function a are
significantly weaker than what is usually assumed in the literature. Most other analyses of this
problem assume at least that a has a gradient that lies in L∞(D). As we will see below, we could
even weaken Assumptions A1 and A2 and only assume that ‖a‖Ct(D) and 1/amin have a finite
number of bounded moments, i.e. 0 < p ≤ pa, for some fixed pa > 0, but in order not to complicate
the presentation we did not choose to do this.

As usual in finite element methods, we will study the PDE (2.1) in weak (or variational) form,
for fixed ω ∈ Ω. This is not possible uniformly in Ω, but almost surely. In the following we will not
explicitly write this each time. With f(ω, ·) ∈ Ht−1(D) and 0 < amin(ω) ≤ a(ω, x) ≤ amax(ω) <∞,
for all x ∈ D, the variational formulation of (2.1), parametrised by ω ∈ Ω, is

bω
(
u(ω, ·), v

)
= Lω(v) , for all v ∈ H1

0 (D), (2.3)

where the bilinear form bω and the linear functional Lω (both parametrised by ω ∈ Ω) are defined
as usual, for all u, v ∈ H1

0 (D), by

bω(u, v) :=
∫
D
a(ω, x)∇u(x) · ∇v(x) dx and Lω(v) := 〈f(ω, ·), v〉Ht−1(D),H1−t

0 (D) . (2.4)

We say that for any ω ∈ Ω, u(ω, ·) is a weak solution of (2.1) iff u(ω, ·) ∈ H1
0 (D) and satisfies (2.3).

The following result is classical. It is based on the Lax-Milgram Lemma [18].

Lemma 2.1. For almost all ω ∈ Ω, the bilinear form bω(u, v) is bounded and coercive in H1
0 (D)

with respect to | · |H1(D), with constants amax(ω) and amin(ω), respectively. Moreover, there exists
a unique solution u(ω, ·) ∈ H1

0 (D) to the variational problem (2.3) and

|u(ω, ·)|H1(D) .
‖f(ω, ·)‖Ht−1(D)

amin(ω)
.

The following proposition is a direct consequence of Lemma 2.1.

Theorem 2.2. The weak solution u of (2.1) is unique and belongs to Lp(Ω, H1
0 (D)), for all p < p∗.

Proof. First note that u : Ω → H1
0 (D) is measurable, since u is a continuous function of a.

The result then follows directly from Lemma 2.1, Assumptions A1 and A3 and from the Hölder
inequality.

However, as usual in finite element methods we will require more (spatial) regularity of the
solution u to be able to show convergence. We will come back to this in Section 3.1. First let us
look at some typical examples of input random fields used in applications.
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2.3 Log-normal Random Fields

A coefficient a(ω, x) of particular interest in applications of (2.1) is a log-normal random field,
where a(ω, x) = exp [g(ω, x)] with g : Ω × D → R denoting a Gaussian field. We consider only
mean zero homogeneous Gaussian fields with Lipschitz continuous covariance kernel

C(x, y) = E
[
(g(ω, x)−E[g(ω, x)])(g(ω, y)−E[g(ω, y)])

]
= k

(
‖x−y‖

)
, for some k ∈ C0,1(R+) (2.5)

and for some norm ‖ · ‖ in Rd. In particular, this may be the usual modulus ‖x‖ = |x| := (xTx)1/2

or the 1-norm ‖x‖ = ‖x‖1 :=
∑d

i=1 |xi|. A typical example of a covariance function used in practice
that is only Lipschitz continuous is the exponential covariance function given by

k(r) = σ2 exp(−r/λ), (2.6)

for some parameters σ2 (variance) and λ (correlation length).
With this type of covariance function, it follows from Kolmogorov’s Theorem [8] that, for all

t < 1/2, the trajectories of g belong to Ct(D) almost surely. More precisely, Kolmogorov’s Theorem
ensures the existence of a version g̃ of g (i.e. for any x ∈ D, we have g(·, x) = g̃(·, x) almost surely)
such that g̃(ω, ·) ∈ Ct(D), for almost all ω ∈ Ω. In particular, we have for almost all ω, that
g(ω, ·) = g̃(ω, ·) almost everywhere. We will identify g with g̃ in what follows.

Built on the Hölder continuity of the trajectories of g and using Fernique’s Theorem [8], it was
shown in [5] that Assumption A1 holds and that a ∈ Lp(Ω, C0(D)), for all p ∈ (0,∞).

Lemma 2.3. Let g be Gaussian with covariance (2.5). Then the trajectories of the log-normal field
a = exp g belong to Ct(D) almost surely, for all t < r, and

‖a(ω)‖Ct ≤
(

1 + 2 |g(ω)|Ct
)
amax(ω) .

Proof. Fix ω ∈ Ω and t < 1/2. Since the trajectories of g belong to Ct(D) almost surely, we have

|eg(ω,x) − eg(ω,y)| ≤ |g(ω, x)− g(ω, y)|
(
eg(ω,x) + eg(ω,y)

)
≤ 2 amax(ω) |g(ω)|Ct |x− y|t.

for any x, y ∈ D. Now, amax(ω) |g(ω)|Ct <∞ almost surely, and so the result follows by taking the
supremum over all x, y ∈ D.

Lemma 2.3 can in fact be generalised from the exponential function to any smooth function of g.

Proposition 2.4. Let g be a mean zero Gaussian field with covariance (2.5). Then Assumptions
A1–A2 are satisfied for the log-normal field a = exp g with any t < 1

2 .

Proof. Clearly by definition amin ≥ 0. The proof that 1/amin ∈ Lp(Ω), for all p ∈ (0,∞), is based
on an application of Fernique’s Theorem [8] and can be found in [5, Proposition 2.2]. To prove
Assumption A2 note that, for all t < 1/2 and p ∈ (0,∞), g ∈ Lp(Ω, Ct(D)) (cf. [5, Proposition 3.5])
and amax ∈ Lp(Ω) (cf. [5, Proposition 2.2]). Thus the result follows from Lemma 2.3 and an
application of Hölder’s inequality.

Smoother covariance functions, such as the Gaussian covariance kernel

k(r) = σ2 exp(−r2/λ2), (2.7)

which is analytic on D ×D, or more generally the covariance functions in the Matérn class with
ν > 1, all lead to g ∈ C1(D) and thus Assumption A2 is satisfied for all t ≤ 1.

Remark 2.5. The results in this section can be extended to log-normal random fields for which
the underlying Gaussian field g(ω, x) does not have mean zero, under the assumption that this
mean is sufficiently regular. Adding a mean c(x) to g, we have a(ω, x) = exp[c(x)] exp[g(ω, x)], and
assumptions A1-A2 can still be satisfied. In particular, the assumptions still hold if c(x) ∈ C1/2(D).
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2.4 Truncated Karhunen-Loève Expansions

A starting point for many numerical schemes for PDEs with random coefficients is the approxi-
mation of the random field a(ω, x) as a function of a finite number of random variables, a(ω, x) ≈
a(ξ1(ω), ..., ξK(ω), x). This is true, for example, for the stochastic collocation method discussed in
Section 3.4. Sampling methods, such as Monte–Carlo type methods discussed in Section 4, do not
rely on such a finite–dimensional approximation as such, but may make use of such approximations
as a way of producing samples of the input random field.

A popular choice to achieve good approximations of this kind for log-normal random fields is
the truncated Karhunen-Loève (KL) expansion. For the random field g (as defined in Section 2.2),
the KL–expansion is an expansion in terms of a countable set of independent, standard Gaussian
random variables {ξn}n∈N. It is given by

g(ω, x) =
∞∑
n=1

√
θnbn(x)ξn(ω),

where {θn}n∈N are the eigenvalues and {bn}n∈N the corresponding normalised eigenfunctions of the
covariance operator with kernel function C(x, y) defined in (2.5). For more details on its derivation
and properties, see e.g. [14]. We will here only mention that the eigenvalues {θn}n∈N are all
non–negative with

∑
n≥0 θn < +∞.

We shall write a(ω, x) as

a(ω, x) = exp

[ ∞∑
n=1

√
θnbn(x)ξn(ω)

]
,

and denote the random fields resulting from truncated expansions by

gK(ω, x) :=
K∑
n=1

√
θnbn(x)ξn(ω) and aK(ω, x) := exp

[
K∑
n=1

√
θnbn(x)ξn(ω)

]
, for some K ∈ N.

The advantage of writing a(ω, x) in this way is that it gives an expression for a(ω, x) in terms of
independent, standard Gaussian random variables.

Finally, we denote by uK the solution to our model problem with the coefficient replaced by its
truncated approximation,

−∇ · (aK(ω, x)∇uK(ω, x)) = f(ω, x), (2.8)

subject to homogeneous Dirichlet boundary conditions uK = 0 on ∂D.
Under certain additional assumptions on the eigenvalues and eigenfunctions of the covariance

operator, it is possible to bound the truncation error ‖u− uK‖Lp(Ω,H1
0 (D)), for all p < p∗, as shown

in [5]. We make the following assumptions on (θn, bn)n≥0 :

B1. The eigenfunctions are continuously differentiable, i.e. bn ∈ C1(D) for any n ≥ 0.

B2. There exists an r ∈ (0, 1) such that,∑
n≥0

θn‖bn‖2(1−r)
L∞(D)‖∇bn‖

2r
L∞(D) < +∞.

Proposition 2.6. Let Assumptions B1–B2 be satisfied, for some r ∈ (0, 1). Then Assumptions
A1–A2 are satisfied also for the truncated KL–expansion aK of a, for any K ∈ N and t < r.
Moreover, ‖aK‖Lp(Ω, Ct(D̄)) and ‖1/aminK ‖Lp(Ω) can be bounded independently of K. If, moreover,
Assumption B2 is satisfied for ∂bn

∂xi
instead of bn, for all i = 1, . . . , d, then ‖aK‖Lp(Ω, C1(D̄)) can be

bounded independently of K.
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Proof. This is essentially [5, Propositions 3.7 and 3.8]. The Hölder continuity aK ∈ Lp(Ω, Ct(D),
for all p ∈ (0,∞), can be deduced as in Lemma 2.3 from the almost sure Hölder continuity of the
trajectories of gK proved in [5, Proposition 3.5].

Let us recall the main result on the strong convergence of u to uK from [5, Theorem 4.2].

Theorem 2.7. Let Assumptions B1–B2 be satisfied, for some r ∈ (0, 1). Then, uK converges, for
all p < p∗, to u ∈ Lp(Ω, H1

0 (D)). Moreover, for any s ∈ [0, 1], we have

‖u− uK‖Lp(Ω,H1
0 (D)) .

( ∑
n>K

θn‖bn‖2(1−r)
L∞(D)‖∇bn‖

2r
L∞(D)

)1/2

︸ ︷︷ ︸
=:C2.7(K)

‖f‖Lp(Ω,Hs−1(D))

The hidden constant depends only on D, r, p. Similarly ‖u−uK‖Lp(Ω,L2(D)) . C2.7 ‖f‖Lp(Ω,Hs−1(D)).

Assumptions B1–B2 are fulfilled, among other cases, for the analytic covariance function (2.7)
as well as for the exponential covariance function (2.6) with 1-norm ‖x‖ =

∑d
i=1 |xi| in (2.5),

since then the eigenvalues and eigenvectors can be computed explicitly and we have explicit decay
rates for the KL–eigenvalues. For details see [5, Section 7]. In the latter case, on non-rectangular
domains D, we need to use a KL-expansion on a bounding box containing D to get again explicit
formulae for the eigenvalues and eigenvectors. Strictly speaking this is not a KL–expansion on D.

Proposition 2.8. We have the following bound on the constant in Theorem 2.7:

C2.7(K) .

 K
ρ−1
2 , for the 1-norm exponential covariance kernel,

K
d−1
2d exp

(
− c1K

1/d
)
, for the Gaussian covariance kernel,

for some constant c1 > 0 and for any 0 < ρ < 1. The hidden constants depend only on D, ρ, p.

3 Finite Element Error Analysis

Let us now come to the central part of this paper. To carry out a finite element error analysis
for (2.1) under Assumptions A1-A3, we will require first of all regularity results for trajectories
of the weak solution u. However, since we did not assume uniform ellipticity or boundedness of
bω(·, ·), it is essential that we track exactly, how the constants in the regularity estimates depend
on the input random field a. We were unable to find such a result in the literature, and we will
therefore in Section 3.1 reiterate the steps in the usual regularity proof for the solution u(ω, ·) of
(2.3) following the proof in Hackbusch [18], but highlighting explicitly where and how constants
depend on a. A detailed proof is given in Appendix A. We will need to assume that D ⊂ Rd is a
C2 bounded domain for this proof. Regularity proofs that require only Lipschitz continuity for the
boundary of D do exist (cf. Hackbusch [18, Theorems 9.1.21 and 9.1.22]), but we did not consider
it instructive to complicate the presentation even further. We do not see any obstacles in also
getting an explicit dependence of the constants in the case of Lipschitz continuous boundaries.

Having established the regularity of trajectories of u, we then carry out a classical finite element
error analysis for each trajectory in Section 3.2 and deduce error estimates for the moments of the
error in u. Since we only have a regularity result for C2 bounded domains and since the integrals
appearing in bω(·, ·) can in general only be approximated by quadrature, we will also need to address
variational crimes, such as the approximation of a C2 bounded domain by a polygonal domain as
well as quadrature errors (cf. Section 3.3).

Let us assume for the rest of this section that D ⊂ Rd is a C2 bounded domain.
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3.1 Regularity of the Solution

Proposition 3.1. Let Assumptions A1-A3 hold with 0 < t < 1. Then, u(ω, ·) ∈ H1+s(D), for all
0 < s < t except s = 1/2 almost surely in ω ∈ Ω, and

‖u(ω, ·)‖H1+s(D) . C3.1(ω) ‖f(ω, ·)‖Hs−1(D), where C3.1(ω) :=
amax(ω)‖a(ω, ·)‖Ct(D)

amin(ω)3
.

If the assumptions hold with t = 1, then u(ω, ·) ∈ H2(D) and ‖u(ω, ·)‖H2(D) . C3.1(ω) ‖f(ω, ·)‖L2(D).

We give here only the main elements of the proof and consider only the case t < 1 in detail. It
follows the proof of [18, Theorem 9.1.16] and consists in three main steps. We formulate the first
two steps as separate lemmas and then give the final step following the lemmas. We fix ω ∈ Ω and
to simplify the notation we will not specify the dependence on ω anywhere in the proof.

In the first step of the proof we take D = Rd and establish the regularity of a slightly more
general elliptic PDE with tensor-valued coefficients.

Lemma 3.2. Let 0 < t < 1 and D = Rd, and let A = (Aij)di,j=1 ∈ Sd(R) be a symmetric, uniformly
positive definite n×n matrix-valued function from D to Rn×n, i.e. there exists Amin > 0 such that
A(x)ξ · ξ ≥ Amin|ξ|2 uniformly in x ∈ D and ξ ∈ Rd, and let Aij ∈ Ct(D), for all i, j = 1, . . . , d.
Consider

−div(A(x)∇w(x)) = F (x) in D (3.1)

with F ∈ Hs−1(Rd), for some 0 < s < t. Any weak solution w ∈ H1(Rd) of (3.1) is in H1+s(Rd)
and

‖w‖H1+s(Rd) .
1

Amin

(
|A|Ct(Rd,Sd(R)) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖H1(Rd),

where |A|Ct(Rd,Sd(R)) is the Hölder seminorm on Sd(R) using a suitable matrix norm.

Proof. This is essentially [18, Theorem 9.1.8] with the dependence on A made explicit, and it can
be proved using the representation of the norm on H1+s(Rd) via Fourier coefficients, as well as a
fractional difference operator Rih, i = 1, . . . , d, on a Cartesian mesh with mesh size h > 0 (similar
to the classical Nirenberg translation method for proving H2 regularity).

It is shown in the proof of [18, Theorem 9.1.8] that
∑d

i=1 ‖(Rih)∗w‖H1(Rd) is an upper bound for
‖w‖H1+s(Rd) and that it can itself be bounded from above in terms of ‖w‖H1(Rd) and ‖F‖Hs−1(Rd)

using the weak form (2.3) of our problem. The dependence of this upper bound on Amin stems
from the fact that in order to use (2.3), we have to switch from |(Rih)∗w|H1(Rd) to the energy norm∫

Rd A(x)|∇(Rih)∗w|2 dx. The dependence on |Aij |Ct(Rd) comes from bounding the differences of Aij
at two consecutive grid points in the translation step.

For a definition of Rih and more details see [18, Theorem 9.1.8] or Section A.1 in the appendix.

The second step consists in treating the case where D = Rd
+ := {y = (y1, ..., yd) : yd > 0}.

Lemma 3.3. Let 0 < t < 1 and D = Rd
+, and let A : D → Sd(R) be as in Lemma 3.2. Consider

now (3.1) on D = Rd
+ subject to w = 0 on ∂D with F ∈ Hs−1(Rd

+), for some 0 < s < t, s 6= 1/2.
Then any weak solution w ∈ H1(Rd

+) of this problem is in H1+s(Rd
+) and

‖w‖H1+s(Rd+) .
Amax

A2
min

(
|A|Ct(Rd+,Sd(R))

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+
Amax

Amin
‖w‖H1(Rd+) .

where Amax := ‖A‖C0(Rd+,Sd(R))
.
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Proof. This is essentially [18, Theorem 9.1.11] with the dependence on A made explicit. It uses
the fact that for any s > 0, s 6= 1/2, the norm

|||v|||s :=
(
‖v‖2

L2(Rd+)
+

d∑
i=1

∥∥∥ ∂v∂xi∥∥∥2

Hs−1(Rd+)

)1/2

is equivalent to the usual norm on Hs(Rd
+). Then using the same approach as in the proof of

Lemma 3.2, we can establish that, for 1 ≤ j ≤ d− 1,∥∥∥∥ ∂w∂xj
∥∥∥∥
Hs(Rd+)

.
1

Amin

(
|A|Ct(Rd+,Sd(R))

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+ ‖w‖L2(Rd+) . (3.2)

To establish a similar bound for j = d is technical. We use (3.1) and the following inequality, for
any D ⊂ Rd and 0 < s < t < 1:

‖bv‖Hs(D) . |b|Ct(D)‖v‖L2(D) + ‖b‖C0(D)‖v‖Hs(D), for all b ∈ Ct(D), v ∈ Hs(D). (3.3)

We use (3.3) to bound the Hs–norm of Aij ∂w∂xj , for (i, j) 6= (d, d), and so by rearranging the weak

form of (3.1) we can also bound the Hs–norm of Add ∂w∂xd . This leads to the additional factor Amax

in the bound. The final result can then be deduced by applying (3.3) once more, with b = 1/Add
and v = Add

∂w
∂xd

, leading to an additional factor 1/Amin. For details see [18, Theorem 9.1.11] or
Section A.2 in the appendix.

Proof of Proposition 3.1. We are now ready to prove Proposition 3.1 using Lemmas 3.2 and 3.3.
The third and last step consists in using a covering of D by m + 1 bounded regions (Di)0≤i≤m,
such that

D0 ⊂ D, D ⊂
m⋃
i=0

Di and ∂D =
m⋃
i=1

(Di ∩ ∂D).

Using a (non-negative) partition of unity {χi}0≤i≤m ⊂ C∞(Rd) subordinate to this cover, it is
possible to reduce the proof to bounding ‖χiu‖H1+s(D), for all 0 ≤ i ≤ m.

For i = 0 this reduces to an application of Lemma 3.2 with w and F chosen to be extensions by
0 from D to Rd of χ0u and of fχ0+a∇u·∇χ0+div(au∇χ0), respectively. The tensor A degenerates
to a(x)Id, where a is a smooth extension of a(x) on D0 to amin on Rd\D, and so Amin = amin and
|A|Ct(Rd,Sd(R)) ≤ |a|Ct(D).

For 1 ≤ i ≤ m, the proof reduces to an application of Lemma 3.3. As for i = 0, we can see
that χiu ∈ H1

0 (D ∩ Di) is the weak solution of the problem −div(a∇ui) = fi on D ∩ Di with
fi := fχi+a∇u ·∇χi+div(au∇χi). To be able to apply Lemma 3.3 to the weak form of this PDE,
we define now a twice continuously differentiable bijection αi (with α−1

i also in C2) from Di to the
cylinder

Qi := {y = (y1, . . . , yd) : |(y1, . . . , yd−1)| < 1 and |yd| < 1},

such that Di ∩ D is mapped to Qi ∩ Rd
+, and Di ∩ ∂D is mapped to Qi ∩ {y : yd = 0}. We use

α−1
i to map all the functions defined above on Di ∩D to Qi ∩Rd

+, and then extend them suitably
to functions on Rd

+ to finally apply Lemma 3.3. The tensor A in this case is a genuine tensor
depending on the mapping αi. However, since ∂D was assumed to be C2, we get Amin . amin,
Amax . amax and |A|Ct(Rd+,Sd(R))

. |a|Ct(Rd+)
, with hidden constants that only depend on αi, α−1

i

and their Jacobians. For details see [18, Theorem 9.1.16] or Section A.3 in the appendix.

Using Proposition 3.1 and Assumptions A1-A3, we can now conclude on the regularity of u.
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Theorem 3.4. Let Assumptions A1-A3 hold with 0 < t ≤ 1. Then u ∈ Lp(Ω, H1+s(D)), for all
p < p∗ and for all 0 < s < t except s = 1/2. If t = 1, then u ∈ Lp(Ω, H2(D)).

Proof. Since amax(ω) ≤ ‖a(ω, ·)‖Ct(D) and Hs−1(D) ⊂ Ht−1(D), for all s < t, the result follows
directly from Proposition 3.1 and Assumptions A1–A3 via Hölder’s inequality.

Remark 3.5. Note that in order to establish u ∈ Lp(Ω, H1+s(D)), for some fixed p > 0, it would
have been sufficient to assume that the constant C3.1 in Proposition 3.1 is in Lq(Ω) for q = p∗ p

p∗−p .
In the case p∗ = ∞, q = p is sufficient. This in turn implies that we can weaken Assumption A1
to 1/amin ∈ Lq(Ω) with q > 3p, or Assumption A2 to a ∈ Lq(Ω, Ct(D)) with q > 2p, or both
assumptions to Lq with q > 5p.

However, in the case of a log-normal field a and p∗ = ∞, we do have bounds on all moments
p ∈ (0,∞), but in general we only have the limited spatial regularity of 1 + s < 3/2.

3.2 Finite Element Approximation

We consider finite element approximations of our model problem (2.1) using standard, continuous,
piecewise linear finite elements. The aim is to derive estimates of the finite element error in the
Lp(Ω, H1

0 (D)) and Lp(Ω, L2(D)) norms. To remain completely rigorous, we keep the assumption
that boundary of D is C2, so that we can apply the explicit regularity results from the previous
section. However, this means that we will have to approximate our domain D by polygonal domains
Dh in dimensions d ≥ 2.

We denote by {Th}h>0 a shape-regular family of simplicial triangulations of the domain D,
parametrised by its mesh width h := maxτ∈Th diam(τ), such that, for any h > 0,

• D ⊂
⋃
τ∈Th τ , i.e. the triangulation covers all of D, and

• the vertices xτ1 , . . . , x
τ
d+1 of any τ ∈ Th lie either all in D or all in Rd\D.

Let Dh denote the union of all simplices that are interior to D and Dh its interior, so that Dh ⊂ D.
Associated with each triangulation Th we define the space

Vh :=
{
vh ∈ C(D) : vh|τ linear, for all τ ∈ Th with τ ⊂ Dh , and vh|D\Dh = 0

}
(3.4)

of continuous, piecewise linear functions on Dh that vanish on the boundary of Dh and in D\Dh.
Let us recall the following standard interpolation result (see e.g. [4, Section 4.4]).

Lemma 3.6. Let v ∈ H1+s(Dh), for some 0 < s ≤ 1. Then

inf
vh∈Vh

|v − vh|H1(Dh) . ‖v‖H1+s(Dh) h
s. (3.5)

The hidden constant is independent of h and v.

This can easily be extended to an interpolation result for functions v ∈ H1+s(D) ∩H1
0 (D), by

estimating the residual overD\Dh. However, whenD is not convex it requires local mesh refinement
in the vicinity of any non-convex parts of the boundary. We make the following assumption on Th:

A4 For all τ ∈ Th with τ ∩Dh = ∅ and xτ1 , . . . , x
τ
d+1 ∈ D, we assume diam(τ) . h2.

Lemma 3.7. Let v ∈ H1+s(D) ∩H1
0 (D), for some 0 < s ≤ 1, and let Assumption A4 hold. Then

inf
vh∈Vh

|v − vh|H1(D) . ‖v‖H1+s(D) h
s. (3.6)
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Proof. This result is classical (for parts of the proof see [18, Section 8.6] or [20]). Set Dδ := D\Dh

where δ denotes the maximum width of Dδ, and let first s = 1. Since vh = 0 on Dδ it suffices to
show that

|v|H1(Dδ) . ‖v‖H2(D) h . (3.7)

The result then follows for s = 1 with Lemma 3.6. The result for s < 1 follows by interpolation,
since trivially, |v|H1(Dδ) ≤ ‖v‖H1(D),

To show (3.7), let w ∈ H1(D). Using a trace result we get

‖w‖L2(Dδ) ≤ ‖w‖L2(Sδ) . δ1/2‖w‖H1(D),

where Sδ = {x ∈ D : dist(x, ∂D) ≤ δ} ⊂ D is the boundary layer of width δ. It follows from
Assumption A4 that diam(τ) . h2 wherever the boundary is not convex. In regions where D is
convex it follows from the smoothness assumption on ∂D that the width of Dδ is O(h2). Hence
δ . h2, which completes the proof of (3.7).

Now, for almost all ω ∈ Ω, the finite element approximation to (2.3), denoted by uh(ω, ·), is
the unique function in Vh that satisfies

bω(uh(ω, ·), vh) = Lω(vh), for all vh ∈ Vh. (3.8)

Since bω(·, ·) is coercive and bounded in H1
0 (D) (cf. Lemma 2.1), we have

|uh(ω, ·)|H1(D) . ‖f(ω, ·)‖Ht−1(D)/amin(ω). (3.9)

as well as the following classical quasi optimality result (cf. [4, 18]).

Lemma 3.8 (Cea’s Lemma). Let Assumptions A1–A3 hold. Then, for almost all ω ∈ Ω,

|u(ω, ·)− uh(ω, ·)|H1(D) ≤ C3.8(ω) inf
vh∈Vh

|u(ω, ·)− vh|H1(D), where C3.8(ω) :=
(
amax(ω)
amin(ω)

)1/2

.

Combining this with the interpolation result above we get the following error estimates.

Theorem 3.9. Let Assumptions A1–A4 hold, for some 0 < t < 1 and p∗ ∈ (0,∞]. Then, for all
p < p∗, s < t with s 6= 1/2 and h > 0, we have

‖u− uh‖Lp(Ω,H1
0 (D)) . C3.9 ‖f‖Lp∗ (Ω,Hs−1(D)) h

s, where C3.9 :=

∥∥∥∥∥a
3/2
max‖a‖Ct(D)

a
7/2
min

∥∥∥∥∥
Lq(Ω)

with q = p∗ p
p∗−p . If Assumptions A2 and A3 hold with t = 1, then

‖u− uh‖Lp(Ω,H1
0 (D)) . C3.9 ‖f‖Lp∗ (Ω,L2(D)) h .

Proof. Let 0 < t < 1 in Assumptions A2 and A3. It follows from Proposition 3.1 and Lemmas 3.7
and 3.8 that, for almost all ω ∈ Ω,

|u(ω, ·)− uh(ω, ·)|H1(D) . C3.1(ω)C3.8(ω) ‖f(ω, ·)‖Hs−1(D) h
s. (3.10)

The result now follows by Hölder’s inequality. The proof for t = 1 is analogous.

The usual duality (or Aubin–Nitsche) “trick” leads to a bound on the L2–error.
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Corollary 3.10. Let Assumptions A1–A4 hold, for some 0 < t < 1 and p∗ ∈ (0,∞]. Then, for all
p < p∗, s < t with s 6= 1/2 and h > 0, we have

‖u− uh‖Lp(Ω,L2(D)) . C3.10 ‖f‖Lp∗ (Ω,Hs−1(D)) h
2s, where C3.10 :=

∥∥∥∥∥a
7/2
max‖a‖2Ct(D)

a
13/2
min

∥∥∥∥∥
Lq(Ω)

with q = p∗ p
p∗−p . If Assumptions A2 and A3 hold with t = 1, then

‖u− uh‖Lp(Ω,L2(D)) . C3.10 ‖f‖Lp∗ (Ω,L2(D)) h
2.

Proof. We will use a duality argument. For almost all ω ∈ Ω, let eω := u(ω, ·)−uh(ω, ·) and denote
by wω the solution to the adjoint problem

bω(v, wω) = (eω, v) for all v ∈ H1
0 (D),

which, by Proposition 3.1 with f(ω, ·) = eω, is also in H1+s(D). By Galerkin orthogonality

‖eω‖2L2(D) = (eω, eω)L2(D) = bω(eω, wω − zh), for any zh ∈ Vh.

Using the boundedness of bω(·, ·) and Lemma 3.7, we then get

‖eω‖2L2(D) . amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) ‖wω‖H1+s(D) h
s.

Now it follows from Proposition 3.1 and Theorem 3.9 that

‖eω‖2L2(D) ≤ amax(ω)C3.1(ω)2C3.8(ω) ‖f(ω, ·)‖Hs−1(D)‖eω‖L2(D) h
2s.

Dividing by ‖eω‖L2(D), the result follows again by an application of Hölder’s inequality.

Remark 3.11. As usual, the analysis can be extended in a straightforward way to other boundary
conditions, to tensor coefficients, or to more complicated PDEs including low–order terms, provided
the boundary data and the coefficients are sufficiently regular, see [18] for details.

3.3 Quadrature Error

The integrals appearing in the bilinear form

bω(wh, vh) =
∑

τ∈Th: τ∈Dh

∫
τ
a(ω, x)∇wh · ∇vh dx

and in the linear functional Lω(vh) involve realisations of random fields. It will in general be
impossible to evaluate these integrals exactly, and so we will use quadrature instead. We will only
explicitly analyse the quadrature error in bω, but the quadrature error in approximating Lω(vh)
can be analysed analogously.

In our analysis, we use the midpoint rule, approximating the integrand by its value at the
midpoint xτ of each simplex τ ∈ Th. The trapezoidal rule which we use in the numerical section
can be analysed analogously. Let us denote the resulting bilinear form that approximates bω on
the grid Th by

b̃ω(wh, vh) =
∑

τ∈Th: τ∈Dh

a(ω, xτ )
∫
τ
∇wh(x) · ∇vh(x) dx ,

and let ũh(ω, ·) denote the corresponding solution to

b̃ω(ũh(ω, ·), vh) = Lω(vh) , for all vh ∈ Vh.

Clearly the bilinear form b̃ω is bounded and coercive, with the same constants as the exact
bilinear form bω and so we can apply the following classical result [6] (with explicit dependence of
the bound on the coefficients).
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Lemma 3.12 (First Strang Lemma). Let Assumptions A1-A3 hold. Then, for almost all ω ∈ Ω,

|u(ω, ·)− ũh(ω, ·)|H1(D) ≤ inf
vh∈Vh

{(
1 +

amax(ω)
amin(ω)

)
|u(ω, ·)− vh|H1(D)+

1
amin(ω)

sup
wh∈Vh

|bω(vh, wh)− b̃ω(vh, wh)|
|wh|H1(D)

}
.

Proposition 3.13. Let Assumptions A1–A4 hold, for some 0 < t < 1 and p∗ ∈ (0,∞]. Then, for
all p < p∗, s < t with s 6= 1/2 and 0 < h < 1, we have

‖u− ũh‖Lp(Ω,H1
0 (D)) . C3.13 ‖f‖Lp∗ (Ω,Hs−1(D)) h

s, where C3.13 :=

∥∥∥∥∥a
5/2
max‖a‖Ct(D)

a
9/2
min

∥∥∥∥∥
Lq(Ω)

with q = p∗ p
p∗−p . If Assumptions A2 and A3 hold with t = 1, then

‖u− ũh‖Lp(Ω,H1
0 (D)) . C3.13 ‖f‖Lp∗ (Ω,L2(D)) h .

Proof. We first note that, for all wh ∈ Vh,

∣∣∣bω(vh, wh)− b̃ω(vh, wh)
∣∣∣ =

∣∣∣∣∣ ∑
τ∈Th

∫
τ

(a(ω, x)− a(ω, xτ ))∇vh · ∇wh dx

∣∣∣∣∣
≤
∑
τ∈Th

∫
τ

|a(ω, x)− a(ω, xτ )|
|x− xτ |t

|x− xτ |t |∇vh(ω) · ∇wh| dx

≤ |a(ω)|Ct(D) h
t |vh|H1(D) |wh|H1(D) .

Hence, it follows from Lemma 3.12 that, for almost all ω ∈ Ω,

|u(ω, ·)− ũh(ω, ·)|H1(D) ≤ inf
vh∈Vh

{(
1 +

amax(ω)
amin(ω)

)
|u(ω, ·)− vh|H1(D) + ht

|a(ω)|Ct(D)

amin(ω)
|vh|H1(D)

}
.

Let us now make the particular choice vh := uh(ω, ·) ∈ Vh, i.e. the solution of (3.8). Then it
follows from (3.9) and (3.10) and the fact that ht < hs, for any s < t ≤ 1 and h < 1, that

|u(ω, ·)− ũh(ω, ·)|H1(D) .

((
1 +

amax(ω)
amin(ω)

)
C3.1(ω)C3.8(ω) +

|a(ω)|Ct(D)

amin(ω)2

)
‖f(ω, ·)‖Hs−1(D) h

s.

The result follows again via an application of Hölder’s inequality.

Remark 3.14. To recover the O(h2s) convergence for the L2-error ‖u − ũh‖Lp(Ω,L2(D)) in the
case of quadrature, we require additional regularity of the coefficient function a. If a(ω, ·) is at
least C2s, then we can again obtain O(h2s) convergence even with quadrature, using duality as
in Corollary 3.10. This is for example the case in the context of lognormal random fields with
Gaussian covariance kernel, where a(ω, ·) ∈ C∞(D). In the context of the exponential covariance
kernel the L2-convergence rate is always bounded by O(h1/2−δ), due to the lack of regularity in a.
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3.4 Truncated Fields

Combining the results from Sections 2.4 and 3.2 we can also estimate the error in the case of
truncated KL-expansions of log-normal coefficients which we will use in the numerical experiments
in Section 5. These results give an improvement of the error estimate given in [5] for log-normal
coefficients that do not admit full regularity, e.g. those with exponential covariance kernel. The
novelty with respect to [5] is the improvement of the bound for the finite element error, leading to
a uniform bound with respect to the number of terms in the KL–expansion. We will assume here
that f(ω, ·) ∈ L2(D).

Let a be a log-normal field as defined in Section 2.4 via a KL expansion and let aK be the
expansion truncated after K terms. Now, for almost all ω ∈ Ω, let uK,h(ω, ·) denote the unique
function in Vh that satisfies

bK,ω(uK,h(ω, ·), vh) = Lω(vh), for all vh ∈ Vh , (3.11)

where bK,ω(u, v) :=
∫
D aK(ω, x)∇u · ∇v dx. Then we have the following result.

Theorem 3.15. Let f ∈ Lp∗(Ω, L2(D)), for some p∗ ∈ (0,∞]. Then, in the Gaussian covariance
case, there exists a c1 > 0 such that, for any p < p∗,

‖u− uK,h‖Lp(Ω,H1
0 (D)) .

(
h + K

d−1
2d exp

(
− c1K

1/d
))
‖f‖Lp∗ (Ω,L2(D)) .

In the case of the 1-norm exponential covariance, for any p < p∗, 0 < ρ < 1 and 0 < s < 1/2,

‖u− uK,h‖Lp(Ω,H1
0 (D)) .

(
C3.15 h

s + K
ρ−1
2

)
‖f‖Lp∗ (Ω,L2(D)) ,

where C3.15 := min{η(K)h1−s, C3.9} and η(K) is an exponential function of K given in [5, Propo-
sition 6.3].

Proof. It follows from Proposition 2.6 that aK satisfies assumptions A1–A2. Therefore we can
apply Theorem 3.9 to bound ‖uK − uK,h‖L2(Ω,H1

0 (D)). The result then follows from Theorem 2.7,
Proposition 2.8 and the triangle inequality.

In contrast to [5, Proposition 6.3] this bound is uniform in K. Note that for small values of K,
the constant C3.15 will actually be of order O(h1−s) leading to a linear dependence on h also in the
exponential covariance case (as stated in [5, Proposition 6.3]). For larger values of K this will not
be the case and the lower regularity of uK will affect the convergence rate with respect to h.

Remark 3.16. As we will see in Section 5, in the exponential covariance case for correlation
lengths that are smaller than the diameter of the domain, a relatively large number K of KL-
modes is necessary to get even 10% accuracy. The new uniform error bound in Theorem 3.15 is
therefore crucial also for the analysis of stochastic Galerkin and stochastic collocation methods,
such as the one given in [5].

4 Convergence Analysis of Multilevel Monte Carlo Methods

We will now apply this new finite element error analysis in Section 4, to give a rigorous bound on
the cost of the multilevel Monte Carlo method applied to (2.1) for general random fields satisfying
Assumptions A1–A3, and to establish its superiority over the classical Monte Carlo method. This
builds on the recent paper [7]. We start by briefly recalling the classical Monte Carlo (MC) and
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multilevel Monte Carlo (MLMC) algorithms for PDEs with random coefficients, together with the
main results on their performance. For a more detailed description of the methods, we refer the
reader to [7] and the references therein.

In the Monte Carlo framework, we are usually interested in finding the expected value of some
functional Q = G(u) of the solution u to our model problem (2.1). Since u is not easily accessible, Q
is often approximated by the quantity Qh := G(uh), where uh denotes the finite element solution on
a sufficiently fine spatial grid Th. Thus, to estimate E [Q] := ‖Q‖L1(Ω), we compute approximations
(or estimators) Q̂h to E [Qh], and quantify the accuracy of our approximations via the root mean
square error (RMSE)

e(Q̂h) :=
(
E
[
(Q̂h − E(Q))2

])1/2
.

The computational cost Cε(Q̂h) of our estimator is then quantified by the number of floating point
operations that are needed to achieve a RMSE of e(Q̂h) ≤ ε. This will be referred to as the ε–cost.

The classical Monte Carlo (MC) estimator for E [Qh] is

Q̂MC
h,N :=

1
N

N∑
i=1

Qh(ω(i)), (4.1)

where Qh(ω(i)) is the ith sample of Qh and N independent samples are computed in total.
There are two sources of error in the estimator (4.1), the approximation of Q by Qh, which is

related to the spatial discretisation, and the sampling error due to replacing the expected value
by a finite sample average. This becomes clear when expanding the mean square error (MSE)
and using the fact that for Monte Carlo E[Q̂MC

h,N ] = E[Qh] and V[Q̂MC
h,N ] = N−1 V[Qh], where

V[X] := E[(X − E[X])2] denotes the variance of the random variable X : Ω→ R. We get

e(Q̂MC
h,N )2 = N−1V[Qh] +

(
E[Qh −Q]

)2
. (4.2)

A sufficient condition to achieve a RMSE of ε with this estimator is that both of these terms are
less than ε2/2. For the first term, this is achieved by choosing a large enough number of samples,
N = O(ε−2). For the second term, we need to choose a fine enough finite element mesh Th, such
that E[Qh −Q] = O(ε).

The main idea of the MLMC estimator is very simple. We sample not just from one approxi-
mation Qh of Q, but from several. Linearity of the expectation operator implies that

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
] (4.3)

where {h`}`=0,...,L are the mesh widths of a sequence of increasingly fine triangulations Th` with
Th := ThL , the finest mesh, and h`−1/h` ≤M∗, for all ` = 1, . . . , L. Hence, the expectation on the
finest mesh is equal to the expectation on the coarsest mesh, plus a sum of corrections adding the
difference in expectation between simulations on consecutive meshes. The multilevel idea is now to
independently estimate each of these terms such that the overall variance is minimised for a fixed
computational cost.

Setting for convenience Y0 := Qh0 and Y` := Qh` −Qh`−1
, for 1 ≤ ` ≤ L, we define the MLMC

estimator simply as

Q̂ML
h,{N`} :=

L∑
`=0

Ŷ MC
`,N`

=
L∑
`=0

1
N`

N∑̀
i=1

Y`(ω(i)), (4.4)

where importantly Y`(ω(i)) = Qh`(ω
(i))−Qh`−1

(ω(i)), i.e. using the same sample on both meshes.
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Since all the expectations E[Y`] are estimated independently in (4.3), the variance of the MLMC
estimator is

∑L
`=0N

−1
` V[Y`] and expanding as in (4.2) leads again to

e(Q̂ML
h,{N`})

2 := E
[(
Q̂ML
h,{N`} − E[Q]

)2] =
L∑
`=0

N−1
` V[Y`] +

(
E[Qh −Q]

)2
. (4.5)

As in the classical MC case before, we see that the MSE consists of two terms, the variance of the
estimator and the error in mean between Q and Qh. Note that the second term is identical to the
second term for the classical MC method in (4.2). A sufficient condition to achieve a RMSE of ε is
again to make both terms less than ε2/2. This is easier to achieve with the MLMC estimator, as

• for sufficiently large h0, samples of Qh0 are much cheaper to obtain than samples of Qh;

• the variance Y` tends to 0 as h` → 0, meaning we need fewer samples on Th` , for ` > 0.

Let now C` denote the cost to obtain one sample of Qh` . Then we have the following results on the
ε–cost of the MLMC estimator (cf. [7, 16]).

Theorem 4.1. Suppose that there are positive constants α, β, γ > 0 such that α≥ 1
2 min(β, γ) and

M1. |E[Qh −Q]| = O(hα)

M2. V[Qh` −Qh`−1
] = O(hβ` )

M2. C` = O(h−γ` ),

Then, for any ε<e−1, there exist a value L and a sequence {N`}L`=0, such that e(Q̂ML
h,{N`}) < ε and

Cε(Q̂ML
h,{N`}) .


ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2−(γ−β)/α, if β < γ.

For the classical MC estimator we have Cε(Q̂MC
h ) = O(ε−2−γ/α).

We can now use the results from Section 3.2 to verify Assumptions M1–M2 in Theorem 4.1
for some simple functionals G(u). More complicated functionals could then be tackled by duality
arguments in a similar way.

Proposition 4.2. Let Q = G(u) := |u|q
H1(D)

, for some 1 ≤ q < p∗/2. Suppose that D is a C2

bounded domain and that Assumptions A1–A4 hold, for some 0 < t < 1. Then Assumptions
M1–M2 in Theorem 4.1 hold for any α < t and β < 2t. For t = 1, we get α = 1 and β = 2.

Proof. We only give the proof for t < 1. The proof for t = 1 is analogous. Let Qh := |uh|qH1(D)
.

Using the expansion aq − bq = (a− b)
∑q−1

j=0 a
jbq−1−j , for a, b ∈ R and q ∈ N, we get

|Q(ω)−Qh(ω)| . |u(ω, ·)− uh(ω, ·)|H1(D) max
{
|u(ω, ·)|q−1

H1(D)
, |uh(ω, ·)|q−1

H1(D)
, 1
}
, almost surely.

This also holds for non-integer values of q > 1. Now, it follows from Lemma 2.1 and Theorem 3.9
that, for any α < t,

|Q(ω)−Qh(ω)| .
C3.1(ω)C3.8(ω)

aq−1
min(ω)

‖f(ω, ·)‖q
Hα−1(D)

hα, almost surely.
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|u|H1(D) ‖u‖L2(D)

d MC MLMC MC MLMC
1 ε−3 ε−2 ε−5/2 ε−2

2 ε−4 ε−2 ε−3 ε−2

3 ε−5 ε−3 ε−7/2 ε−2

|u|H1(D) ‖u‖L2(D)

d MC MLMC MC MLMC
1 ε−4 ε−2 ε−3 ε−2

2 ε−6 ε−4 ε−4 ε−2

3 ε−8 ε−6 ε−5 ε−3

Table 1: Theoretical upper bounds for the ε-costs of classical and multilevel Monte Carlo from The-
orem 4.1 in the case of log-normal fields a with Gaussian covariance function (left) and exponential
covariance function (right). (For simplicity we wrote ε−p, instead of ε−p−δ with δ > 0.)

Taking expectation on both sides and applying Hölder’s inequality, since q < p∗, it follows from
Assumptions A1–A3 that Assumption M1 holds with α < t.

To prove Assumption M2, let us consider Yh` := Qh` − Qh`−1
. As above, it follows from

Lemma 2.1 and Theorem 3.9 together with the triangle inequality that, for any s < t,

|Yh`(ω)| . |uh`(ω, ·)− uh`−1
(ω, ·)|H1(D) max

{
|uh`(ω, ·)|

q−1
H1(D)

, |uh`−1
(ω, ·)|q−1

H1(D)
, 1
}

.
C3.1(ω)C3.8(ω)

aq−1
min(ω)

‖f(ω, ·)‖q
Hs−1(D)

hs` , almost surely,

where the hidden constant depends on M∗. It follows again from Assumptions A1-A3 and Hölder’s
inequality, since q < p∗/2, that

V[Yh` ] = E[Y 2
h`

]− (E[Yh` ])
2 ≤ E[Y 2

h`
] . hβ` , where β < 2t.

Proposition 4.3. Let Q := ‖u‖q
L2(D)

, for some 1 ≤ q < p∗/2. Suppose that D is a C2 bounded
domain and that Assumptions A1–A4 hold, for some 0 < t < 1. Then Assumptions M1–M2 in
Theorem 4.1 hold for any α < 2t and β < 4t. For t = 1, we get α = 2 and β = 4.

Proof. This can be shown in the same way as Proposition 4.2 using Corollary 3.10 instead of
Theorem 3.9.

Substituting these values into Theorem 4.1 we can get theoretical upper bounds for the ε-costs
of classical and multilevel Monte Carlo in the case of log-normal fields a, as shown in Table 1.
We assume here that we can obtain individual samples in optimal cost C` . h−d` log(h−1

` ) via a
multigrid solver, i.e. γ = d+δ for any δ > 0. We clearly see the advantages of the multilevel Monte
Carlo method. More importantly, note that in the exponential covariance case in dimensions d > 1,
the cost of MLMC is proportional to the cost of obtaining one sample on the finest grid, i.e. solving
one deterministic PDE with the same regularity properties to accuracy ε. This implies that the
method is optimal.

5 Numerical Results

In this section, we want to confirm numerically some of the results proved in earlier sections. All
numerical results shown are for the case of a log-normal random coefficient a(ω, x) with exponential
covariance function (2.6). All results are calculated for a model problem in 1D. The domain D
is taken to be (0, 1), and f ≡ 1. The sampling from the random coefficient a(ω, x) is done using
a truncated KL-expansion, and as in the analysis in Section 3.3, we use the midpoint rule to
approximate the integrals in the stiffness matrix. As the quantities of interest we will just study
the simple functionals Q := ‖u‖L2(D) and Q := |u|H1(D).
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Figure 1: Let d = 1 and σ2 = 1 in the exponential covariance case for different choices of
the correlation length λ. Left: Plot of

∑
n>K θn as a function of K, i.e. the sum of the re-

maining KL eigenvalues when truncating after K terms. Right: The corresponding relative er-
ror

∣∣E [‖uK∗,h∗‖L2(D) − ‖uK,h∗‖L2(D)

]∣∣ /E [‖uK∗,h∗‖L2(D)

]
for problem (2.8) with K∗ = 5000 and

h∗ = 1/2048. The dotted line has a gradient of −1.

5.1 Convergence with Respect to K

We start with the results in Section 2.4. We want to show that in the exponential covariance case
a relatively large number of KL-modes are necessary (even in 1D) to obtain acceptable accuracies
especially when the correlation length is smaller than the diameter of the domain. In Figure 1 we
study the decay of the eigenvalues corresponding to the KL-expansion, as well as the convergence
with respect to K of E

[
‖uK‖L2(D)

]
to E

[
‖u‖L2(D)

]
. Since we do not know the exact solution and

cannot solve the differential equation explicitly, we approximate u by uK∗,h∗ with K∗ = 5000 and
h∗ = 1/2048 and uK by uK,h∗ with h∗ = 1/2048.

In the left figure we plot
∑

n>K θn, i.e. the sum of the remaining eigenvalues when truncating
after K terms. We see that after a short pre-asymptotic phase (depending on the size of λ) this sum
decays linearly inK−1. On the right we plot

∣∣E [‖uK∗,h∗‖L2(D) − ‖uK,h∗‖L2(D)

]∣∣ /E [‖uK∗,h∗‖L2(D)

]
,

the relative error. We see that the error decays roughly like
∑

n>K θn and thus also linearly in K−1.
This is better than the bound for E

[
‖uK∗,h∗ − uK,h∗‖L2(D)

]
≥
∣∣E [‖uK∗,h∗‖L2(D) − ‖uK,h∗‖L2(D)

]∣∣
in Proposition 2.8, which predicts at most O(K−1/2) convergence, and it is related to weak conver-
gence. As shown in [5, Section 5], the weak convergence order of the PDE solution with truncated
KL-expansion can be O(

∑
n>K θn) for certain functionals. We believe that the faster convergence

of E
[
‖uK‖L2(D)

]
to E

[
‖u‖L2(D)

]
can be shown using similar techniques.

5.2 Convergence with Respect to h

We now move on to the results in the main Section 3. For the reference solution we choose again
h∗ = 1/2048 and K∗ = 5000. Figure 2 shows the convergence of E

[
|uK∗,h∗ − uK∗,h|H1(D)

]
and

E
[
‖uK∗,h∗ − uK∗,h‖L2(D)

]
for (2.8). In the plots, a dash-dotted line indicates O(h1/2) convergence

and a dotted line indicates O(h) convergence.
In both cases, we can see a short pre-asymptotic phase, which is again related to the correlation

length λ. We can see in the right plot that the H1–error converges with O(h1/2), confirming the
sharpness of the bound proven in Theorem 3.13. The L2–error converges linearly in h, and so the
quadrature error does not seem to be dominant here.
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Figure 2: Left: Plot of E
[
|uK∗,h∗ − uK∗,h|H1(D)

]
versus 1/h for model problem (2.8) with d = 1,

λ = 0.1 and σ2 = 3. Right: Corresponding L2-error E
[
‖uK∗,h∗ − uK∗,h‖L2(D)

]
. The gradient of

the dash-dotted (resp. dotted) line is −1/2 (resp. -1).

Figure 3: Left: Plot of |E
[
‖uK∗,h‖L2(D) − ‖uK∗,h∗‖L2(D)

]
|, for model problem (2.8) with d = 1,

λ = 0.1, σ2 = 3, K∗ = 5000 and h∗ = 1/2048. Right: Corresponding plot of the variance
V
[
‖uK∗,h‖L2(D) − ‖uK∗,2h‖L2(D)

]
. The gradient of the dotted (resp. dashed) line is −1 (resp. −2).

5.3 Multilevel Monte Carlo Convergence

We first want to confirm Assumptions M1 and M2 in Theorem 4.1, for Q = ‖u‖L2(D). In other
words, we want to confirm the rate of decay for the quantities |E

[
‖uK∗,h∗‖L2(D) − ‖uK∗,h‖L2(D)

]
|

and V
[
‖uK∗,h‖L2(D) − ‖uK∗,2h‖L2(D)

]
. Again, we choose K∗ = 5000 and h∗ = 1/2048 and look at

the model problem (2.8) for d = 1. The results are shown in Figure 3. A dotted line indicates
linear convergence, and a dashed line indicates quadratic convergence.

For the variance V
[
‖uK∗,h‖L2(D) − ‖uK∗,2h‖L2(D)

]
(right plot), we observe the quadratic con-

vergence predicted by Proposition 4.3. The expected value in the left plot seems to converge slightly
faster than the predicted linear convergence. In our experience, this faster convergence depends
on the choice of model problem and quantity of interest and will need to be investigated further,
since it directly affects the cost of the multilevel Monte Carlo method through the size of the ratio
β/α in the bound in Theorem 4.1.

The actual performance of the standard MC and MLMC estimators in estimating Q = ‖u‖L2(D)

is shown in Figure 4. In the right plot the accuracy is scaled by the expected value of the quantity
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Figure 4: Left: Number of samples N` per level. Right: Plot of the cost scaled by ε−2 of the
MLMC and standard MC estimators for d = 1, with λ = 0.1 and σ2 = 3. The coarsest mesh size
in all tests is h0 = 1/16.

of interest. We see a clear advantage of the multilevel Monte Carlo method. For more numerical
results, in particular results in 2D, we refer the reader to [7].

6 Conclusions and Further Work

One of the major bottlenecks in probabilistic uncertainty quantification is the efficient numerical
solution of PDEs with random coefficients. A typical model problem that arises in subsurface flow
is an elliptic PDE with log-normal coefficients. The resulting PDE is not uniformly elliptic or
bounded with respect to the random variable ω and usually lacks also full regularity. In this paper,
we carry out for the first time a careful finite element error analysis under these weaker assumptions
and provide optimal error estimates — with respect to the given regularity of the coefficients —
for all finite moments of the finite element error (including quadrature errors). This then allows
us to rigorously analyse the convergence and the cost of multilevel Monte Carlo methods, recently
proposed for elliptic PDEs with random coefficients, in particular in the practically important case
of log-normal coefficients with exponential covariance which has hitherto been unproved.

Via duality arguments, the results in this paper are readily applicable also to other functionals
of the solution of more practical relevance. Other important aspects which we want to investigate
in the future are the influence of the correlation length λ on the MLMC convergence, as well as the
superconvergence in the expected value of certain model problems and quantities of interest (as
highlighted in the discussion of Figure 2). Another issue which will require further research is the
choice of quadrature rule. So far we have only used simple midpoint or trapezoidal rules. In future
work we would like to also explore multiscale methods and model reduction on coarser grids.

A Detailed Regularity Proof

In this appendix, we give more detailed proofs of Proposition 3.1 and Lemmas 3.2 and 3.3. The
proofs follow those of Hackbusch [18, Theorems 9.1.8, 9.1.11 and 9.1.16], making explicit the
dependence of all the constants that appear on the PDE coefficient a. The proof follows the
classical Nirenberg translation method and consists in three main steps.
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A.1 Step 1 – The Case D = Rd

Proof of Lemma 3.2. In this proof we will use the norm on Hs(Rd) provided by the Fourier trans-
form, ‖u‖2

Hs(Rd)
:= ‖û(ξ)(1 + |ξ|2)s/2‖L2(Rd), which is equivalent to the norm defined previously

and defines the same space.
For any h > 0, we define the fractional difference operator (in direction i = 1, . . . , d) by

Rih(v)(x) := h−s
+∞∑
µ=0

e−µh(−1)µ
(
s

µ

)
v(x+ µhei),

where ei is the ith unit vector in Rd,(s
0

)
= 1 and

(
s

µ

)
(−1)µ =

−s(1− s)(2− s)...(µ− 1− s)
µ!

.

Let us recall here some properties of Rih from [18, Proof of Theorem 9.1.8]:

• (Rih)∗(v)(x) = h−s
∑+∞

µ=0 e
−µh(−1)µ

(
s
µ

)
v(x− µhei).

• For any τ ∈ R and v ∈ Hτ+s(Rd),

‖Rihv‖Hτ (Rd) ≤ ‖v‖Hτ+s(Rd) and ‖(Rih)∗v‖Hτ (Rd) ≤ ‖v‖Hτ+s(Rd). (A.1)

• R̂ihv(ξ) = [(1− e−h+iξjh)/h]sv̂(ξ) and (̂Rih)∗v(ξ) = [(1− e−h−iξjh)/h]sv̂(ξ).

We define for u, v ∈ H1(Rd) the bilinear form

d(u, v) :=
∫

Rd
A∇u∇Rih(v) dx−

∫
Rd
A∇(Rih)∗u∇v dx

=
∞∑
µ=1

h−se−µh(−1)µ
(
s

µ

)∫
Rd

(A(x− µhei)−A(x))∇u(x− µhei)∇v dx.

Hence,

|d(u, v)| . |A|Ct(Rd,Sd(R)) |u|H1(Rd) |v|H1(Rd),

where the hidden constant is proportional to

∞∑
µ=1

h−se−µh(−1)µ
(
s

µ

)
(µh)t,

which is finite, since
(
s
µ

)
= O(µ−s−1) and thus

∑∞
µ=1 e

−µhµt−s−1 = O(hs−t). The three spaces

H1−s(Rd) ⊂ L2(Rd) ⊂ Hs−1(Rd) form a Gelfand triple, so that we can deduce, using (A.1), that

Amin|(Rih)∗w|2H1(Rd) ≤
∫

Rd
A∇(Rih)∗w∇(Rih)∗w dx

= −d(w, (Rih)∗w) + 〈F,Rih(Rih)∗w〉Hs−1(Rd),H1−s(Rd)

≤ |d(w, (Rih)∗w)|+ ‖F‖Hs−1(Rd)‖Rih(Rih)∗w‖H1−s(Rd)

. |A|Ct(Rd,Sd(R)) |w|H1(Rd) |(Rih)∗w|H1(Rd) + ‖F‖Hs−1(Rd) ‖(Rih)∗w‖H1(Rd),
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therefore we get

Amin‖(Rih)∗w‖2H1(Rd) . |A|Ct(Rd,Sd(R)) |w|H1(Rd) |(Rih)∗w|H1(Rd) +

‖F‖Hs−1(Rd) ‖(Rih)∗w‖H1(Rd) + Amin‖(Rih)∗w‖2L2(Rd)

. |A|Ct(Rd,Sd(R)) |w|H1(Rd) |(Rih)∗w|H1(Rd) +

‖F‖Hs−1(Rd) ‖(Rih)∗w‖H1(Rd) + Amin‖(Rih)∗w‖H−1(Rd)‖(Rih)∗w‖H1(Rd),

and finally, using (A.1) once more,

‖(Rih)∗w‖H1(Rd) .
1

Amin

(
|A|Ct(Rd,Sd(R)) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖L2(Rd).

For any 1 ≥ h > 0, since |1− e−h−iξih|2 ≥ |Im(1− e−h−iξih)|2 = e−2h sin(ξih)2 ≥ e−2 sin(ξih)2, and
since sin2(ξh) ≥

(
2
π ξh

)2, for all |ξ| ≤ 1/h, we have conversely that

d∑
i=1

‖(Rih)∗w‖2H1(Rd) ≥
∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

| ̂(Rih)∗w(ξ)|2dξ

=
∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

∣∣∣∣1− e−h−iξihh

∣∣∣∣2s |ŵ(ξ)|2dξ

≥ e−2

∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

∣∣∣∣sin(ξih)
h

∣∣∣∣2s |ŵ(ξ)|2dξ

&
∫
|ξ|≤1/h

(1 + |ξ|2)|ξ|2s|ŵ(ξ)|2dξ.

Hence, for any 0 < h ≤ 1, we obtain

‖w‖2H1+s(Rd) ≤
∫

Rd
(1 + |ξ|2)|ξ|2s|ŵ(ξ)|2dξ +

∫
Rd

(1 + |ξ|2)|ŵ(ξ)|2dξ

≤
d∑
i=1

‖(Rih)∗w‖2H1(Rd) + ‖w‖2H1(Rd)

and so

‖w‖H1+s(Rd) .
1

Amin

(
|A|Ct(Rd,Sd(R)) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖H1(Rd) < +∞.

A.2 Step 2 – The Case D = Rd
+

In order to proof Lemma 3.3 we will need the following two lemmas.

Lemma A.1 ([18, Lemma 9.1.12]). Let s > 0, s 6= 1/2, then

|||v|||s :=

(
‖v‖2

L2(Rd+)
+

d∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

Hs−1(Rd+)

)1/2

defines a norm on Hs(Rd
+) that is equivalent to ‖v‖Hs(Rd+) .
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Lemma A.2. Let D ⊂ Rd and 0 < s < t < 1. If b ∈ Ct(D) and v ∈ Hs(D), then bv ∈ Hs(D) and

‖bv‖Hs(D) . |b|Ct(D)‖v‖L2(D) + |b|C0(D)‖v‖Hs(D).

The hidden constant depends only on t, s and d.

Proof. This is a classical result, but we require again the exact dependence of the bound on b.
First note that trivially ‖bv‖L2(D) ≤ bmax‖v‖L2(D) where bmax := |b|C0(D). Now, for any x, y ∈ D,
we have

|b(x)v(x)− b(y)v(y)|2 ≤ 2(b(x)2|v(x)− v(y)|2 + v(y)2|b(x)− b(y)|2).

Continuing v by 0 on Rd and denoting this extension by ṽ, this implies∫∫
D2

|b(x)v(x)− b(y)v(y)|2

‖x− y‖d+2s
dx dy ≤ 2b2max‖v‖2Hs(D) + 2

∫∫
D2

v(y)2|b(x)− b(y)|2

‖x− y‖d+2s

≤ 2b2max‖v‖2Hs(D) +
∫∫

x,y∈D
‖x−y‖≥1

8b2max

v(y)2

‖x− y‖d+2s
+ 2|b|2Ct(D)

v(y)2

‖x− y‖d+2(s−t) dx dy

≤ 2b2max‖v‖2Hs(D) +

(
8b2max

∥∥∥∥ 1‖z‖≥1

‖z‖d+2s

∥∥∥∥
L1(Rd)

+ 2|b|2Ct(D)

∥∥∥∥ 1‖z‖≤1

‖z‖d+2(s−t)

∥∥∥∥
L1(Rd)

)
‖ṽ‖2L2(Rd)

. b2max‖v‖2Hs(D) + |b|2Ct(D)
‖v‖2L2(D).

Proof of Lemma 3.3. First we continue the solution w by 0 on Rd \ Rd
+ and denote the extension

w̃ ∈ H1(Rd). Take 1 ≤ i ≤ d− 1. Similarly to the previous section, we define for u, v ∈ H1(Rd)

d(u, v) :=
∫

Rd+
A∇u∇Rih(v) dx−

∫
Rd+
A∇(Rih)∗u∇v dx

and deduce again that

|d(u, v)| . |A|Ct(Rd+,Sd(R))
|u|H1(Rd+) |v|H1(Rd+) .

We now note that, since i 6= d, (Rih)∗w ∈ H1
0 (Rd

+) and (Rih)∗w̃ ∈ H1(Rd) is equal to the continuation
by 0 on Rd \ Rd

+ of (Rih)∗w. We deduce, similarly to the proof in Section A.1 using (A.1), that

‖(Rih)∗w̃‖H1(Rd) .
1

Amin

(
|A|Ct(Rd+,Sd(R))

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+ ‖w‖H1(Rd+) =: B(w).

(Note that we added |w|H1(Rd+) to the bound to simplify the notation later.) Hence, by the same
token as in the previous section, we get∫

Rd
(1 + |ξ|2)(|ξ1|2 + ...+ |ξd−1|2)s| ̂̃w(ξ)|2dξ . B(w)2. (A.2)

In particular, this implies that, for 1 ≤ i ≤ d and 1 ≤ j ≤ d− 1, we have

∫
Rd

∣∣∣∣∣ ∂̂2w̃

∂xi∂xj
(ξ)

∣∣∣∣∣
2

(1 + |ξ|2)s−1dξ =
∫

Rd
|ξi|2|ξj |2| ̂̃w(ξ)|2(1 + |ξ|2)s−1dξ . B(w)2,
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which means that ∂2w̃
∂xi∂xj

∈ Hs−1(Rd) and
∥∥∥ ∂2w̃
∂xi∂xj

∥∥∥
Hs−1(Rd)

. B(w). In particular, for all (i, j) 6=

(d, d), this further implies that ∂2w
∂xi∂xj

∈ Hs−1(Rd
+) and that

∥∥∥ ∂2w
∂xi∂xj

∥∥∥
Hs−1(Rd+)

. B(w). Using

Lemma A.1 we deduce that ∂w
∂xj
∈ Hs(Rd

+) and that∥∥∥∥ ∂w∂xj
∥∥∥∥
Hs(Rd+)

. B(w), for all 1 ≤ j ≤ d− 1. (A.3)

It remains to bound
∥∥∥ ∂w∂xd∥∥∥Hs(Rd+)

, which is rather technical. To achieve it we will use the PDE (3.1),

Lemma A.2 and the following result.

Lemma A.3. For almost all xd ∈ R, we have ∂w̃
∂xd

(., xd) ∈ Hs(Rd−1) and∫
R

∥∥∥ ∂w̃
∂xd

(., xd)
∥∥∥2

Hs(Rd−1)
dxd =

∫
Rd

(1 + |ξ′|2)s|ξd|2
∣∣∣ ̂̃w(ξ)

∣∣∣2 dξ . B(w)2.

Proof. This follows from Fubini’s theorem and Plancherel’s formula, together with (A.2).

From this we deduce that ∂w
∂xd

(., xd) ∈ Hs(Rd−1), for almost all xd ∈ R+, and that∫
R+

∥∥∥ ∂w
∂xd

(., xd)
∥∥∥2

Hs(Rd−1)
dxd . B(w)2.

Let 1 ≤ i ≤ d − 1. Using Lemma A.2 we deduce that Aid ∂w∂xd (., xd) ∈ Hs(Rd−1), for almost all
xd ∈ R+, and that∥∥∥∥(Aid ∂w∂xd

)
(., xd)

∥∥∥∥
Hs(Rd−1)

. |Aid(., xd)|Ct(Rd−1)

∥∥∥∥ ∂w∂xd (., xd)
∥∥∥∥
L2(Rd−1)

+ ‖Aid(., xd)‖C0(Rd−1)

∥∥∥∥ ∂w∂xd (., xd)
∥∥∥∥
Hs(Rd−1)

.

Therefore, since by definition ‖Aid‖C0(Rd) ≤ Amax, we get∫
R+

∥∥∥Aid ∂w
∂xd

∥∥∥2

Hs(Rd−1)
dxd . |Aid|2Ct(Rd+)

|w|2
H1(Rd+)

+A2
max B(w)2 . A2

max B(w)2.

Since ∂
∂xi

is linear continuous from H1−s(Rd−1) to H−s(Rd−1) (cf. [18, Remark 6.3.14(b)]) we can

deduce from this that ∂
∂xi

(
Aid

∂w
∂xd

)
∈ Hs−1(Rd

+) and that∥∥∥∥ ∂

∂xi

(
Aid

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Amax B(w), for all 1 ≤ i ≤ d− 1. (A.4)

To see this take ϕ ∈ D(Rd
+). Then∣∣∣∣∣

〈
∂

∂xi

(
Aid

∂w

∂xd

)
, ϕ

〉
D′(Rd+),D(Rd+)

∣∣∣∣∣ =
∥∥∥∥Aid ∂w∂xd (x′, xd)

∂ϕ

∂xi
(x′, xd)

∥∥∥∥
L2(R+,Hs(Rd−1))

≤
∥∥∥∥Aid ∂w∂xd

∥∥∥∥
L2(R+,Hs(Rd−1))

∥∥∥∥ ∂ϕ∂xi (x′, xd)
∥∥∥∥
L2(R+,H−s(Rd−1))

≤
∥∥∥∥Aid ∂w∂xd

∥∥∥∥
L2(R+,Hs(Rd−1))

‖ϕ‖L2(R+,H1−s(Rd−1)).
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Using (A.3) and Lemma A.2, we deduce in a similar way that ∂
∂xi

(
Aij

∂w
∂xj

)
∈ Hs−1(Rd

+) and that∥∥∥∥ ∂

∂xi

(
Aij

∂w

∂xj

)∥∥∥∥
Hs−1(Rd+)

. Amax B(w), for all 1 ≤ i ≤ d and 1 ≤ j ≤ d− 1. (A.5)

We can now use the PDE (3.1) to get a similar bound for (i, j) = (d, d). Since F ∈ Hs−1(Rd
+),

it follows from (A.4) and (A.5) that ∂
∂xd

(
Add

∂w
∂xd

)
∈ Hs−1(Rd

+) and that∥∥∥∥ ∂

∂xd

(
Add

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Amax B(w) + ‖F‖Hs−1(Rd+) . Amax B(w) .

Analogously to (A.4) we can prove that∥∥∥∥ ∂

∂xi

(
Add

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Amax B(w), for all 1 ≤ i ≤ d− 1.

Hence, we can finally apply Lemma A.1 to get that Add ∂w∂xd ∈ H
s(Rd

+) and that∥∥∥∥Add ∂w∂xd
∥∥∥∥2

Hs(Rd+)

.
d∑
i=1

∥∥∥∥ ∂

∂xi

(
Add

∂w

∂xd

)∥∥∥∥2

Hs−1(Rd+)

+
∥∥∥∥Add ∂w∂xd

∥∥∥∥2

L2(Rd+)

. A2
max B(w)2 .

By applying Lemma A.2 again, this time with b := 1/Add and v := Add
∂w
∂xd

, we deduce that
∂w
∂xd
∈ Hs(Rd

+) and that∥∥∥∥ ∂w∂xd
∥∥∥∥
Hs(Rd+)

.

∣∣∣∣ 1
Add

∣∣∣∣
Ct(Rd+)

∥∥∥∥Add ∂w∂xd
∥∥∥∥
L2(Rd+)

+
1

Amin

∥∥∥∥Add ∂w∂xd
∥∥∥∥
Hs(Rd+)

.
|Add|Ct(Rd+)

A2
min

Amax |w|H1(Rd+) +
1

Amin

∥∥∥∥Add ∂w∂xd
∥∥∥∥
Hs(Rd+)

.
Amax

Amin
B(w) .

To finish the proof we use this bound together with (A.3) and apply once more Lemma A.1 to
show that w ∈ H1+s(Rd

+) and

‖w‖H1+s(Rd+) .
Amax

A2
min

(
|A|Ct(Rd+,Sd(R))

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+

Amax

Amin
‖w‖H1(Rd+).

A.3 Step 3 – The Case D Bounded

We can now prove Proposition 3.1 using Lemmas 3.2 and 3.3 in two successive steps. We recall
that D was assumed to be C2. Let (Di)0≤i≤m be a covering of D such that the (Di)0≤i≤m are open
and bounded, D ⊂ ∪mi=0Di, ∪mi=1(Di ∩ ∂D) = ∂D, D0 ⊂ D.

Let (χi)0≤i≤m be a partition of unity subordinate to this cover, i.e. we have χi ∈ C∞(Rd,R+)
with compact support supp(χi) ⊂ Di , such that

∑p
i=0 χi = 1 on D. We denote by u the solution

of (2.3) and split it into u =
∑p

i=0 ui, with ui = uχi. We treat now separately u0 and then ui,
1 ≤ i ≤ p, using Section A.1 and A.2, respectively.

Lemma A.4. u0 belongs to H1+s(D) and

‖u0‖H1+s(D) .
‖a‖Ct(D)

a2
min

‖f‖Hs−1(D) .
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Proof. Since supp(u0) ⊂ D0, we have that u0 ∈ H1
0 (D) and it is the weak solution of the new

equation −div(a∇u0) = F on D, where

F := fχ0 + a∇u · ∇χ0 + div(au∇χ0) on D.

To apply Lemma 3.2 we will now extend all terms to Rd, but continue to denote them the same.
The terms u0 and fχ0 + a∇u · ∇χ0 can both be extended by 0. Their extensions will belong
to H1(Rd) and Hs−1(Rd), respectively. It follows from Lemma A.2 that au ∈ Hs(D) and so if
we continue au∇χ0 by 0 on Rd, the extension belongs to Hs(Rd), since supp(χ0) is compact in
D. Using the fact that div is linear and continuous from Hs(Rd) to Hs−1(Rd) (cf. [18, Remark
6.3.14(b)] and the proof of (A.4) above), we can deduce that the divergence of the extension of
au∇χ0 is in Hs−1(Rd), leading to an extension of F on Rd, which belongs to Hs−1(Rd).

Let ψ ∈ C∞(Rd, [0, 1]) such that ψ = 0 on D0 and ψ = 1 on D̃c, where D̃ is an open set such
that D0 ⊂ D̃ and D̃ ⊂ D. We use the following extension of a from D0 to all of Rd:

a(x) :=
{
a(x)(1− ψ(x)) + aminψ(x), if x ∈ D,

aminψ(x), otherwise.

This implies that a ∈ Ct(Rd), and for any x ∈ Rd, amin ≤ a(x) ≤ a(x) and |a|Ct(Rd) . ‖a‖Ct(D).

Using these extensions, we have that −div(a∇u0) = F in D′(Rd). Indeed, for any v ∈ D(Rd),∫
Rd
a(x)∇u0(x)∇v(x) =

∫
D
a(x)∇u0(x)∇v(x) for any v ∈ D(Rd),

since supp(u0) is included in the open bounded set D0, which implies that∇u0 = 0 on Dc
0 and a = a

on D0. Since u ∈ H1
0 (D), we have by Poincaré’s inequality that ‖u‖L2(D) . |u|H1(D). Therefore it

follows from Lemma 2.1 that

|u0|H1(Rd) ≤ |u|H1(D)‖χ0‖∞ + ‖u‖L2(D)‖∇χ0‖∞ .
‖f‖Hs−1(D)

amin
.

Since χ0 ∈ C∞(Rd), using Lemma A.2 and the linearity and continuity of div from Hs(Rd) to
H1−s(Rd) we further get

‖F‖Hs−1(Rd) ≤ ‖fχ0‖Hs−1(Rd) + ‖a∇u · ∇χ0‖Hs−1(Rd) + ‖div(au∇χ0)‖Hs−1(Rd)

. ‖f‖Hs−1(D) + amax|u|H1(D) + |a|Ct(D)‖u‖L2(D) + amax‖u‖Hs(D)

.
‖a‖Ct(D)

amin
‖f‖Hs−1(D).

We can now apply Lemma 3.2 with A = aId and w = u0 to show that u0 ∈ H1+s(Rd) and

‖u0‖H1+s(Rd) .
1

amin

(
|a|Ct(D)|u0|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖u0‖H1(Rd) .

‖a‖Ct(D)

a2
min

‖f‖Hs−1(D) .

The hidden constant depends on the choices of χ0 and ψ and on the constant in Poincaré’s in-
equality, which depends on the shape and size of D, but not on a.

Let us now treat the case of ui, 1 ≤ i ≤ m.

Lemma A.5. For 1 ≤ i ≤ m, ui ∈ H1+s(D) and

‖ui‖H1+s(D) .
amax‖a‖Ct(D)

a3
min

‖f‖Hs−1(D).
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Proof. Similarly to the proof of the previous Lemma, ui ∈ H1
0 (D ∩Di) is the weak solution of a

new problem −div(a∇ui) = gi in D′(D ∩Di) with

gi := fχi + a∇u · ∇χi + div(au∇χi).

As in Lemma A.4, since again div is linear and continuous from Hs to Hs−1, we can establish that
gi ∈ Hs−1(D ∩Di) and

‖gi‖Hs−1(D∩Di) .
‖a‖Ct(D)

amin
‖f‖Hs−1(D).

Now let Q = {(y′, yd) ∈ Rd−1×R : |y′| < 1 and |yd| < 1}, Q0 = {(y′, yd) ∈ Rd−1×{0}| ‖y′‖ < 1}
and Q+ = Q ∩ Rd

+. For 1 ≤ i ≤ p, let αi be a bijection from Di to Q such that αi ∈ C2(Di),
α−1
i ∈ C2(Q), αi(Di ∩D) = Q+ and αi(Di ∩ ∂D) = Q0.

For all y ∈ Q+, we define wi(y) := ui(α−1
i (y)) ∈ H1

0 (Q+) with ∇wi(y) = J−ti (y)∇ui(α−1
i (y)),

where Ji(y) := Dαi(α−1
i (y))) is the Jacobian of αi. Furthermore, for x ∈ Di ∩D and ϕ ∈ H1

0 (Q+),
we define v(x) := ϕ(αi(x)). Then v ∈ H1

0 (Di ∩D) and ∇v(α−1
i (y)) = J ti (y)∇ϕ(y), for all y ∈ Q+,

so that∫
Di∩D

a(x)∇ui(x) · ∇v(x) dx =
∫
Q+

a(α−1
i (y))∇ui(α−1

i (y)) · ∇v(α−1
i (y)) |detJi(y))|−1 dy

=
∫
Q+

Ai(y)∇wi(y) · ∇ϕ(y) dy ,

where
Ai(y) := a(α−1

i (y)) |detJi(y))|−1(Ji J ti )(y) ∈ Sd(R).

We define Fi ∈ Hs−1(Q+) by

〈Fi, ϕ〉Hs−1(Q+),H1−s
0 (Q+) := 〈gi, ϕ ◦ αi〉Hs−1(Di∩D),H1−s

0 (Di∩D), for all ϕ ∈ H1−s
0 .

Indeed, since we assumed that αi and α−1
i are in C2, we have ϕ ◦αi ∈ H1−s

0 (Di ∩D) and moreover
‖ϕ ◦ αi‖H1−s(Di∩D) . ‖ϕ‖H1−s(Q+) (cf. [18, Theorems 6.2.17 and 6.2.25(g)]), which implies that
Fi ∈ Hs−1(Q+) and

‖Fi‖Hs−1(Q+) . ‖gi‖Hs−1(D∩Di).

We finally get that vi ∈ H1
0 (Q+) solves∫

Q+

Ai∇vi · ∇ϕ dy = 〈Fi, ϕ〉Hs−1(Q+),H1−s
0 (Q+) for all ϕ ∈ H1

0 (Q+).

In order to apply Lemma 3.3 we check first that Ai ∈ Ct(Q+, Sd(R)) and that it is coercive, and
then define an extension of Ai to Rd

+. Recalling that αi is a C2–diffeomorphism from Di ∩ D to
Q+, with α−1

i ∈ C2(Q+), we have for any y ∈ Q+ and ξ ∈ Rd:

• Coercivity: Ai(y)ξ · ξ = a(α−1
i (y))|detJi(y)|−1 |J ti (y)ξ|2 & amin|ξ|2. Hence Amin & amin .

• Boundedness:

Amax := ‖Ai‖C0(Q+,Sd(R)) = max
x∈Di∩D

a(x) ‖|detJi|−1JiJ
t
i ‖C0(Q+,Sd(R)) . amax .

• Regularity: Ai ∈ Ct(Q+, Sd(R)) and

‖Ai‖Ct(Q+,Sd(R)) ≤ amax ‖|detJi|−1JiJ
t
i ‖Ct(Q+,Sd(R))

+ |a|Ct(D) ‖|detJi|−1JiJ
t
i ‖C0(Q+,Sd(R)) . ‖a‖Ct(D) .
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We now extend Ai to Rd
+. Since we assumed that supp(χi) is compact in Di, we can choose Qi

and Q̃i such that supp(vi) ⊂ Qi ⊂ Qi ⊂ Q̃i ⊂ Q̃i ⊂ Q and consider ψ ∈ C∞(Rd, [0, 1]) such that

ψ = 0 on Qi and ψ = 1 on Q̃i
c
. We define the extension Ai of Ai on Rd

+ by

Ai(x) :=
{
Ai(x)(1− ψ(x)) + aminψ(x)Id if x ∈ Q+

aminψ(x)Id if x ∈ Qc+

Analogously to the case of a in Lemma A.4, we can deduce that, for any y ∈ Rd
+ and ξ ∈ Rd,

Ai(y)ξ ·ξ & amin|ξ|2, Amax = ‖Ai‖C0(Rd+,Sd(R))
. amax and ‖Ai(y)‖Ct(Rd+,Sd(R))

. ‖a‖Ct(D) . (A.6)

We now define an extension of Fi on Rd
+. Note again that we can choose an open set Gi such that

supp(Fi) ⊂ Gi ⊂ Gi ⊂ Q and extend Fi to all of Rd
+ such that ‖Fi‖Hs−1(Rd+) . ‖Fi‖Hs−1(Q+). Finally

we continue vi by 0 on Rd
+, which yields vi ∈ H1

0 (Rd
+). Moreover, since Ai = Ai on supp(vi) ⊂ Qi,

vi is then the weak solution on Rd
+ of

−div(Ai(x)∇vi(x)) = Fi(x),

which enables us to apply Lemma 3.3 and to obtain that vi ∈ H1+s(Rd
+) and

‖vi‖H1+s(Rd+) .
Amax

A2
min

(
|Ai|Ct(Rd+,Sd(R))

|vi|H1(Rd+) + ‖Fi‖Hs−1(Rd+)

)
+

Amax

Amin
‖vi‖H1(Rd+) .

Recalling that ui(x) = vi(αi(x)) for any x ∈ D ∩Di and using the bounds in (A.6), as well as the
transformation theorem [18, Theorem 6.2.17], we finally get

‖ui‖H1+s(D) .
amax

a2
min

(
‖a‖Ct(D) ‖u‖H1(D∩Di) + ‖gi‖Hs−1(D∩Di)

)
+

amax

amin
‖u‖H1(D)

.
amax ‖a‖Ct(D)

a3
min

‖f‖Hs−1(D) .

The result in Proposition 3.1 follows directly from Lemmas A.4 and A.5, if we recall that u =
m∑
i=0

ui.
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